
Clusters as Large-Scale Development Facilities1

Rémy Evard, Narayan Desai, John-Paul Navarro, and Daniel Nurmi

{evard, desai, navarro, nurmi}@mcs.anl.gov

Abstract
In this paper, we describe the use of a cluster as a generalized facility for development. A
development facility is a system used primarily for testing and development activities while being
operated reliably for many users. We are in the midst of a project to build and operate a large-
scale development facility. We discuss our motivation for using clusters in this way and compare
the model to a classic computing facility. We describe our experiences and findings from the first
phase of this project. Many of these observations are relevant to the design of standard clusters
and to future development facilities.

1 Background
The objective of Argonne National Laboratory’s Chiba City Project [1] is to provide a computing
platform for development and testing of large-scale high-performance computing software while
carrying out research in systems software (e.g., the software needed to manage and operate the
systems and to support applications). We have two primary motivations for this work:

• Scalability is a fundamental goal of high-performance computing. Much research during
the past decade has demonstrated that the primary barrier to achieving systems scalability
is scalability of systems software.

• Researchers investigating paths to petaflops-capable systems in the early and mid-1990s
identified multiple possible hardware technology paths to petascale performance. Each
of these hardware paths, regardless of the technology base, had one thing in common: the
need for increasing degrees of concurrency in future systems. Future systems are likely
to have hundreds of thousands to millions of individual components.

In essence, future high-end systems will be substantially larger scale than today’s systems,
perhaps by three or more orders of magnitude. System software, libraries, and applications must
be able to operate effectively at this scale.
The explosive growth of commodity-based clusters has reinforced these expectations. Many
institutions have demonstrated that one can effectively build very large systems out of small and
cheap individual components. As processor technology continues to shrink in size and cost, to
increase in capability, and to become specialized, clusters will continue to grow in size and
capability. However, the scalability of systems software has not kept pace with the growth of
clusters. It is still true that one of the biggest challenges in the cluster computing community is
the development of system software that scales reliably.
One of the barriers to the development of such systems software is that facilities that support
developing and testing at scale are rare. The vast majority of large computers in existence are
dedicated to computational simulation, not to development and testing. Developers only have
limited access and time on these systems, and any kind of development that might destabilize the

1 This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing Research, U.S. Dept. of Energy, under
Contract W-31-109-ENG-38.

system (such as file system or scheduler changes) must be done with extreme care, if at all. The
standard batch-queue model of supercomputer scheduling is not conducive to development or
exploration of ideas, both of which tend to require interaction. This situation substantially limits
the amount of research and development that can be put into scalability issues, which in turn
tends to cause people to focus their effort in other directions.
The first Chiba City cluster was installed in 1999 as a facility for large-scale development and
testing in order to help address the lack of testbeds for system software developers and to promote
research into scalability issues in all areas of high-performance computing. Demand for the
development capabilities of system is increasing strongly. We are now in the process of
designing the next generation of the facility. In this paper, we describe our experiences and
observations from the first phase of this project.

2 A Development and Testbed Facility
We designed and built Chiba City by incorporating our own experience in supporting a decade of
research activities on a wide range of parallel platforms with the designs of other clusters and
input from potential early users of the system. The capabilities of the system have changed over
time as we have come to better understand the requirements of the testbed community. Here we
describe the initial capabilities and features of the system that were focused on testbed activities.

2.1 System Components
To first order, Chiba City looks very much like a standard cluster used for computational science
e.g. a BEOWULF system [2]. (See Figure One.) The components of the system can be
categorized as follows:

Chiba City
8 User Towns

256 Dual Pentium III systems
1 Visualization Town
32 Pentium III systems

with Matrox G400 cards

1 Storage Town
8 Xeon systems

with 300G disk each

Cluster Management
12 PIII Mayor Systems

4 PIII Front End Systems
2 Xeon File Servers

3.4 TB disk
High Performance Net

64-bit Myrinet

Management Net
Gigabit and Fast Ethernet

Gigabit External Link

Figure 1 – Chiba City Diagram

• User nodes (256). These nodes run the user’s “jobs”.
• Login nodes (2). These are the front-end nodes, with a full Linux computing

environment. This is where “jobs” are submitted to a scheduler.
• Management nodes (11). These systems manage the user nodes, but are not visible to

the users.
• Storage nodes (8). These systems provide file system service to the user nodes and are

accessible to users carrying out I/O experiments.
• Visualization nodes (32). These systems support graphics and visualization

experiments.
• Myrinet.
• Switched fast/gigabit Ethernet.

A more detailed description of the Chiba City environment is in [1]. In practice this system
organization has worked fairly well.

2.2 The Management System
The management system has been essential to the testbed activities. The cluster was designed
around the concept of having a robust and reliable management system that could be used to
manage and control the rest of the cluster.
The physical components of the management system include:

• The management nodes mentioned above. These are organized hierarchically; there is
one primary management node that controls all of the other management nodes. Each of
these in turn control and monitor up to thirty-two user nodes.

• A serial console infrastructure, allowing access to all system consoles via the network.
The management systems monitor the consoles for status and occasionally issue
commands over the consoles.

• A simple power control infrastructure that allows administrators to power cycle any
hardware in the system.

Management of the system requires a suite of software tools. Some of these are standard systems
administration and cluster tools from the open source community, while others were developed in
house. The most important of these in relation to this paper is the “ChibaDB” – a database of
information about the cluster, including node hardware information and node software
configuration. When a node is rebooted or rebuilt (as described in section 4.1), the management
system uses the database to determine which operating system to install on that node.

2.3 System Usage
While the cluster was to be dedicated to supporting testbed activities, we also intended to support
computational science when cycles on the system were available. Priorities for cluster usage
were set in this order:

1. Computer science researchers and developers.
2. Computational scientists who were willing to act as testers of the potentially unstable

system software.
3. Computational scientists testing code at large scale.
4. Other potential users.

Under normal circumstances, a batch scheduler mediates access to the cluster, just as if it were a
standard computational cluster.

2.4 Initial Capabilities
Based on the requirements identified by the initial users of the system, we designed a system that
gave users the following abilities:

• On-Demand Access: the ability to run programs on the system without waiting in the
batch queue. We have supported this in a number of ways, some of which have changed
over time.

• Interactivity: the ability to interact with a program or the OS on a user node. This is a
fairly standard feature on most clusters, as it is important for debugging.

• Root Access: having root access on one or more user nodes of a system.
• Dynamic OS: the ability to install a non-standard operating system, or variant of a

standard one, on one or more user nodes.
We were able to grant root access and dynamic operating systems on the user nodes by building a
cluster management infrastructure that could reboot and install an operating system on any user
node in the system. Thus, after a user completed using a set of nodes in this way, we could
“clean up” and re-install the standard OS before allocating those nodes to the next user.
This set of features was sufficient for the early use of the system. However, as our understanding
of the needs of testbed users has grown, we have modified and extended the basic requirements
list accordingly.

2.5 Relation to Computational Clusters
The standard usage of a testbed cluster is similar to the usage of a computational cluster:

• Users request resource allocations and run jobs on the resulting nodes.
• Job runs consist of the following steps:

o The user supplies the application and input data.
o The user then specifies the way that the application is executed.
o Finally, the output data produced by the application is returned to the user.

While this high level description applies to both computational and testbed clusters, the specifics
in both cases are substantially different. We illustrate this using the case of a testbed user who is
developing some aspect of an operating system and therefore installs a custom image as part of
their activity:
 Computational User Testbed User
Desired resource Some number of nodes with a standard

(and usually minimal) OS.
Some number of nodes with a
custom and user-specified OS.

Application A user-mode application. An OS with custom features.
Input Typically data sets or input parameters. Test cases to be executed.
Output Typically some form of numerical

result.
Results of tests, both
qualitative and quantitative.

In essence this means that the basic job model for both uses is similar in character. (Indeed, we
support both types of jobs on the system, often simultaneously.) However, the specific goals of a
testbed user’s job are often quite different, which in turn means that the usage patterns within that
job are different.

3 Testbed Usage Characterization
In the first days of the system, testbed usage was largely characterized by users who needed
interactive access to a large cluster for short periods of time. For example, scientists used the
cluster to test systems software that launched jobs. In this case, which is typical of much of this
type of development, the scientists would need to use the entire system interactively, but only for
moments at a time.
Interestingly, the usage of the system has changed over time, both as the system has become more
capable and as the user community of Chiba City has grown. Recently, we have had quite a
number of different OS and system tool developers on the system who need to install their own
operating systems on as much of the cluster as possible. After pushing out and configuring the
installation, they usually run a series of tests that might take hours or days.
We can classify testbed usage based on two metrics:

• Degree of scalability. This describes the degree to which the specific project is focused
on developing and testing at large scale, or carrying out research into scalability issues.

• Degree of system impact. This describes the project’s ability to operate in the standard
environment. We have categorized these as “computational usage”, “basic
development”, “system development”, and “extreme development”, each of which is
described below.

These two issues, scalability and impact, go hand in hand. While the testbed can support high-
impact development on a single node, most high-impact testbed users are also interested in testing
scalability issues. Therefore, while we have found it interesting to note which of our users
operate at large-scale, we have not found it particularly useful to differentiate between them
based on scalability because most of the testbed users eventually want to use the entire system.
In the following sections, we profile these broad categories of cluster users and describe the
augmented functionality they require in order to effectively use testbed clusters. They are
described in order of increasing degree of system impact.

3.1 Computational Usage
The first type of user is a standard application user on a computational cluster. In most of these
cases, the user has a mature application that they want to run for some period of time. The
operating system running on the nodes usually doesn’t matter as long as the application can be
recompiled for the target system. No enhanced privileges of any sort are required on any portion
of the system. A computational user may place significant demand on the I/O system of the
cluster.
The intent of a computational application user is typically to generate set of numerical results.

3.2 Basic Development
The second type of user, which is quite common on Chiba City, is the basic development user. A
good example of this type of user is a system library developer such as a numerical library or a
communications library.
In general, these types of programmers are interested in the scalability and performance of their
code. They have the following requirements, some of which were noted above:

• On-demand access. Waiting in a queue when actively developing can severely limit the
effectiveness of a development session. These users like to be in the “code/compile/test”
loop that is common for development on unscheduled systems. In order to address this
issue, we took three steps:

o Thirty-two of the nodes on the system are “unscheduled”, i.e. the scheduler does
not control access to them. They are available to all users at all times, and are
specifically meant to be used as an on-demand testing area.

o The scheduler policy was arranged to allow only very short-running jobs during
certain business hours. In theory, this would allow the quick jobs that
characterize this kind of development to migrate to the front of the queue. In
reality we discovered that this feature was rarely used because developers didn’t
link their development schedules to the queue policy.

o We made it possible to easily request reserved nodes on the system for arbitrary
amounts of time.

• Interactive access. In particular, interactive debugging is important for this type of
usage. This type of access to the nodes was enabled by default; when the scheduler
allocates a node to a user, that user can login to that node.

• Property Extraction in job runs. Development users frequently want information from
a variety of sources ranging from kernel counters to network performance data in order to
provide insight into execution and performance

• Permission to stress the system. Occasionally, large-scale development and testing will
tax the system greatly, sometimes beyond the limits of system stability. It turns out that
when these sorts of system instabilities occur, developers are usually interested in
determining the root cause of the problem and may not consider the instability to be
detrimental. In order to support this type of activity, expectations across the user
community must be set, i.e. users must be aware that the system will occasionally have
instabilities as a result of user code and that this is acceptable (although not actually
desirable).

Typically, the intent of the basic development user is to obtain information about performance
properties of applications. It should be noted that, in many cases, computational users also carry
out basic development when they are developing their computational code and generally have
these same requirements.

3.3 System Development
A more demanding type of user of the system is one who carries out “system” development.
Projects that require system development capabilities make some kind of modification to the user
nodes or to the system itself that require some type of “cleanup” before the system can be used by
other users.
System developers typically have the same requirements as basic developers. In addition, they
have one or more of these:

• Root Access. Some developers, such as those developing device drivers or testing
daemons, require privileged access on the user nodes. On a system where root privileges
can be assigned to users, the software state on a node can become untrustworthy. Even in
the case where users are trusted, honest mistakes can happen, causing a configuration
management nightmare. In effect, when root access is granted to users, the node must be
considered untrustworthy, and must be rebuilt when the user is complete. One
implication of this is that the rebuild process must be robust and efficient. Giving root
access to users also has security implications, which are discussed below.

• Specialized Kernels. In some cases, developers need a very specific kernel that may be
different than the one installed by default on the node. This brings up the same issues as
root access does – the node will need to be rebuilt when the user is done.

• Hardware Management. Users who are working in this mode are most likely doing
work that could crash the node. If this takes place, the user will most likely want access
to the hardware of the system in order to debug or restart the node. At the present time
on our facility, this would require that the users have access to the management
infrastructure of the cluster – a level of access that we are not comfortable making
generally available to users. In practice, this situation only comes up rarely, and when it
does, it has been possible to have a system administrator participate in the debugging
activities. If this becomes a bigger issue in the future, we will need to solve this in a
more general way.

Again, the intent of this kind of user is to carry out development and to test properties of their
applications, such as stability and performance, rather than to generate any sort of numerical
result.

3.4 Extreme Development
The “extreme” developer is one that is developing or packaging up a complete operating system,
or is working on cluster-wide system services. Most extreme developers have the same
requirements as the previous types of developers, but have one or both of these objectives in
addition:

• User-Defined Node Software. The user provides an operating system in some form that
can be installed on the nodes allocated to them. In order for this to be successful, these
images usually need to meet certain requirements: they must be able to use the facility’s
network, which opens up a number of issues related to node identification. Nodes
typically need to set up trust relationships with other nodes in the same project. These
issues create a number of technical challenges that are discussed in section 4. Once the
user is done with the nodes, they will need to be rebuilt into a standard configuration.

• Dynamic System Services. Some projects eventually mature to the point that they can
be installed as a part of the cluster fabric for serious testing. Examples of such projects
include naming services, mapping services, grid software, file systems, and so on. In
every case of this up to the present time, we have had the system managers of the facility
get directly involved in the project in order to determine specific goals, testing
procedures, and fallback plans. Perhaps the trickiest issue here is that these types of
activities tend to destabilize the system infrastructure, once again requiring that the user
community have the correct expectations for system reliability.

3.5 Hardware Development
A final type of user in this continuum may be the hardware developer. We have not yet had any
hardware developers carry out development or research on our facility, but this is beginning to
appear increasingly likely.
Hardware-related projects might include simple testing of new network hardware at scale,
augmenting nodes in particular ways (i.e. PIMs or other specialized processors), or trying
alternative system management interfaces for nodes.

3.6 Hybrid Models
This categorization of usage models is not precisely discrete. Potentially new approaches to
computation and development can be carried out in this type of environment.
For example, it is possible for someone to fine-tune an OS image that is optimized for his or her
application, and then to carry out computation using that alternative OS image.

4 Technical Issues
In order to support the technical requirements described above, one must address a variety of
issues that are not commonly faced on standard clusters. Some of these can be solved through
simple policy changes, for example by adjusting scheduler algorithms and by appropriately
setting user expectations. However, many are technical in nature.
In the following sections, we describe the technical issues that we have encountered. In some
cases, we feel that we have adequately addressed these challenges in the first phase of this
project. In other cases, the problems are beyond the scope of our initial activities.

4.1 Support for Arbitrary OS Images
One of the main requirements of a development cluster, as noted above, is the capability for users
to be able to run custom operating systems on the nodes of the cluster. We refer generically to a
node’s operating system and its configuration as “an image”. The degree of image customization
varies from user to user and may range from a changed device driver to a completely different
OS.
In our environment, we have decided to reinstall the standard node operating system on any node
customized by a user, even in the simplest cases. This has worked quite well. We use this same
model to rebuild nodes where users have been granted root access (because we have no idea what
might have changed).
This node image installation and recovery scheme has three important aspects: an image
description mechanism, an OS installation mechanism, and a node recovery system. Each of
these will be described in some detail:

4.1.1 Image Description Mechanism
Automated operating system installation has been a common technique in the systems
administration community for decades. The most complicated part of this problem has turned out
to be the description of the software to be installed on a system and the changes to be made on
each individual system. This is also a challenge for clusters.
Fortunately, the systems administration community has developed a variety of configuration
management tools and techniques, many of which can be adopted directly for use on a cluster. [3]
Despite this activity, image description and change management remain fertile areas of potential
research. [4,5]
In essence, images to be installed on nodes must be described somehow. More importantly, users
who install their own images must also be able to describe their images, which is an activity that
most users would prefer to avoid. The open question in this area is how best to enable users and
administrators to easily describe node images, which may include such complications as:

• The node disk geometry
• Other hardware configuration information such as network card parameters
• The base operating system and software packages
• Configuration changes to the base operating system
• Pointers to external services such as naming mechanisms or file systems
• The need to be installed on potentially different nodes over time

We would like a general solution to this problem, but have found that two basic mechanisms have
worked for us so far:

• Raw Bit Installation: In this method, an administrator or a user installs an image on a
single node. We then take a snapshot of the bits on the node and the disk partition

information. We can then reconstruct an exact copy of that node on nearly any system.
We have successfully installed both Linux and Windows operating systems using this
method. However, changes in hardware (i.e. devices) or the environment (i.e. servers)
limit the effectiveness of this solution.

• Boot Disk Installation: In this method, the user provides a boot disk that will install the
proper bits onto disk. The boot disk includes image configuration information that can be
customized to each node. That boot disk is distributed onto the cluster management
infrastructure, and the individual nodes then boot from that boot disk. (This process is
similar to using Kickstart [6], and in fact we have booted nodes using Kickstart in this
way.)

We have found that these approaches meet the basic requirements, i.e. they can be used to allow
users to install arbitrary images on nodes. However, due to the complex nature of image creation,
the cluster administrators usually need to assist with the process. As demand on the system
continues to grow, we are concerned that approaches of this type will not scale.

4.1.2 OS Installation Mechanism
The job of the operating system installation mechanism is, as one might expect, to install an
image on a node. The installation mechanism should be able to install an arbitrary image (i.e. any
image built in the ways described above).
The OS install mechanism should not rely on any hooks or infrastructure on the node itself; it
should work if the node has no software, has a supported operating system, or is running
mysterious user code.
Fortunately, the industry has largely solved this problem with standard network booting
protocols. DHCP [7] and PXE [8] are commonly used to remotely install operating systems on
computers over a network. PXE, unfortunately, only works on a subset of Ethernet cards,
however these are increasingly common.
In addition to these standard protocols, our solution incorporates a database that maps nodes to
desired images, making boot decisions based on the state of the system. In some cases, we will
install the appropriate image directly. In others, where this is not possible, we will install a
known reliable image that will format the local hard drive appropriately and then install the target
image.

4.1.3 Node Recovery System
Once user jobs have run, nodes may have been left in an indeterminate state. The job of the node
recovery system is to prepare those nodes for image installation. Because the node state is
unknown at this point, the infrastructure for node recovery must work independently of host
operating system support.
As our boot management system can take over during a reboot, the simple solution is to force a
reboot of the node. We have implemented this with the use of network accessible power
controllers.
This solution works fairly well for us, however:

• If a user were to reset the BIOS so that a network boot was not forced, the node would
not recover correctly. If this were done across the cluster, we would be forced to
manually reset the BIOS on every node, which would be a real disaster.

• We’re beginning to worry about repeatedly interrupting the power to the nodes. This
doesn’t seem to be the best way to treat hardware. We would prefer to have hardware-

level reboot and power cycle control, such as exists as a management interface on some
systems.

4.2 Complex Infrastructure Requirements
In many cases, developers who are working on the system are able to work on any available set of
nodes without substantial adaptation of their code. In general this is true for developers in the
Basic Development and Systems Development categories. However, some developers discover
that they have to think carefully about adapting their project to a dynamic cluster environment.
This is frequently the case for developers who make substantial changes to the node environment
or are working with cluster-wide system services, i.e. Extreme Developers, and also occasionally
an issue for others.

4.2.1 Entire Cluster Simulation
One of the popular uses of our facility is to test cluster operating systems and cluster management
software. Configuring the test environment for this kind of use takes special care. Typically,
these developers need to simulate an entire cluster, including management, login, storage and
compute functionality, all within the user nodes allocated to them.
This is more difficult than normal for two reasons:

• The users need to map their services onto a set of basically identical systems. The
concept of generically mapping services onto nodes (rather than onto some hardwired test
cluster) is usually foreign.

• The users often need some specific hardware configuration. This may require more disk
space than is available (i.e. to simulate storage nodes), different network cards than the
nodes are configured with, or different hardware arrangements (i.e. to access serial
consoles or hardware performance data) than is possible.

We do not have a general solution to these problems at this time. We are leaning towards having
a pool of “advanced capability” nodes, i.e. with extra memory, disk, and room for peripherals in
order to address the second issue.

4.2.2 External Infrastructure
Some of the software under development on the cluster relies on persistent, external
infrastructure. Those persistent services could conceivably be installed dynamically as parts of
that user’s “job”, but in practice are much easier to install once on some dedicated system. These
often help bootstrap the user’s code.
We have two distinct examples of this:

• When installing Windows2000 as a cluster OS environment, it is useful to have at least
one Windows Domain Controller accessible on the cluster network, providing Windows-
specific information such as user accounts, naming, and so on.

• In order to facilitate some of the Red Hat-based distributions that have been installed on
the cluster, we allocated a dedicated computer to act as the Kickstart boot manager.

The ability to provide external services on a persistent system has simplified these two
experiences substantially.

4.2.3 Production Integration
In some cases, the software under development is approaching production-ready quality. The
next step for these projects is to try the software with real users in production mode. The goal at

this point is to flush out remaining bugs and understand performance issues under a real
workload. The logical next step is to deploy this software as part of the real cluster infrastructure.
On our system, this has taken place with file systems, process managers, and messaging libraries.
The system administrators of the facility installed these on the cluster itself, and these software
versions became the default versions available for users. At this point, the users of the cluster a
whole (both computational and development) became the set of users testing these software
packages.
This process raises three issues. First, it’s not necessarily clear that this is a good idea to do with
all software, and the selection criteria are a bit unclear. Second, doing this requires a great deal of
interaction between the project developers and the cluster administrators; both parties need to buy
in to the plan. Finally and perhaps most importantly, the resulting instabilities can cause
problems for all users on the cluster. As we noted previously, it helps to warn users in advance
that these kinds of failures are expected.

4.3 Supporting Data Gathering in Jobs
We have found that development users want information from a variety of sources to provide
insight into application execution and performance. This data includes:

• Kernel counters
• Hardware counters, such as cache hits, and number of instructions executed
• Environmental data such as temperature, clock speed, etc
• Network performance data
• Application profiling data

This data is accessible in locations both on and off of a user node. For this reason, the application
cannot necessarily collect at of this data directly. At this point, we provide the data on an ad-hoc
basis. A more general solution would be very helpful.

4.4 Persistent Node Identification
A possible characteristic of a development facility is that hardware configurations change fairly
regularly, either as a part of testing hardware or when replacing nodes. In our case, we’ve learned
that we shuffle hardware far more than we had originally anticipated.
On a system in which individual nodes are commonly moved or replaced, the issue of node
identification becomes both important and difficult. In this sense, “node identification” is the
ability to permanently map a node’s physical location in the cluster to a hostname. Knowing the
exact physical and network location of a node (and its associated hostname) is important for
many reasons, including:

• The ability to locate a node when hardware problems occur.
• The desire to track performance and reliability trends based on a persistent name

associated with the hardware.
• The fact that both developers and administrators occasionally need to understand the

topology of the system, for example, when analyzing network performance
characteristics, or when renumbering subsets of a cluster for security reasons.

• On a development cluster, it is highly desirable to know a node’s identity before it boots
in order to deliver the correct OS to that node.

Knowing specifically which hardware has which network address sounds like a very simple
problem, but it is difficult when hardware is regularly moved or changed. Most name assignment

schemes are based on the theory that one only assigns names once, or only assigns names
dynamically. Neither is true in this situation.
The usual method for assigning names is to gather the MAC addresses of each node, associate
those addresses with known hostnames, and then to assign them to nodes dynamically via DHCP
or statically via some host configuration system. On any cluster that is only installed once, MAC
address gathering can be done by hand or via a controlled sequenced boot of each node, one by
one.
In a cluster with dynamic hardware configurations, a more reliable solution is to have the cluster
infrastructure detect that hardware has changed.
Our initial implementation of this on Chiba City used the serial console infrastructure to detect
MAC addresses, register then in the cluster’s DHCP services, and modify the node installations as
necessary. This was an option because the serial console port could be used to precisely identify
physical location of the node. Because the serial console hooks only work on our own node
image and not on arbitrary node images, we are now working on a more general solution that uses
network switch sensing to detect MAC addresses.

4.5 Node-Proof System Software
On a system on which the user nodes may be running any kind of code, the system infrastructure
must be able to function optimally without any dependency on those nodes. We have found in
particular that some scheduling and job launching software tends to rely on status information
from daemons on the user nodes, and will hang or time-out when those nodes are unresponsive.

4.6 Smarter Node BIOS
Standard commodity PC BIOS systems are fairly limited. This has caused problems for us in a
number of ways. We would find the following features extremely helpful:

• Accessibility to the BIOS over the console port.
• Operating system access to the BIOS, i.e. being able to set BIOS features in the same

way that is possible on Solaris systems and others.
• Enhanced monitoring capabilities.
• A consistent approach to locking BIOS settings with a password.

Some of these BIOS issues are being addressed by the LinuxBIOS [9] project (which also has
other desirable features). Unfortunately, in our case, the hardware that we are using cannot take
full advantage of LinuxBIOS, thus we are also hoping for a wider acceptance of LinuxBIOS by
the vendor community in order to be able to use it in the future.

4.7 Security
Allowing users to have root access introduces a number of complicating issues.
The most common problem that we have faced is that someone with root may have done
something (intentionally or not) to modify the state of the image. As noted in section 4.1, we
solve this by rebuilding a node from scratch after a user with root privileges has finished with it.
Users with root access also introduce a number of security issues, particularly if there is a
possibility that the user may be malicious:

• Nodes user administrative control of users should not be trusted by system management
infrastructure. So, for example, a cluster’s NFS file systems should not be exported to
such nodes.

• Some standard trust-related configurations, such as cluster-internal “.rhosts” or .ssh key
files, are no longer an option. Nodes under the control of one user should not trust nodes
under control of another user.

• Users might use their nodes to launch attacks against other networked systems outside of
the cluster. (A cluster would make an interesting testbed for denial-of-service attacks.)

• Users might introduce network-based attacks such as IP spoofing or network sniffing in
order to attack some other job currently running.

• Users may configure system services (intentionally or otherwise) such that their nodes are
susceptible to attacks from outside.

We have not yet addressed any of these issues yet because our user community we are quite
familiar with that portion of our user community to whom we have granted root access, due
largely to their need for aid with image configuration issues. Thus, we have been able to keep an
eye out for such activities. However, this is becoming an increasingly important issue as our user
community grows.
These problems can be addressed in the following ways:

• Nodes upon which a user has root access should be designated as “untrusted”.
• Untrusted nodes should be easily discernable from trusted nodes in order to allow the

management infrastructure to differentiate between the two. In particular, they should
have different IP addresses and hostnames than when they are trusted.

• In order to prevent network-based attacks within the cluster, untrusted nodes should be on
different networks from trusted nodes, and also from other groups of untrusted nodes.
This segmentation requires the use of routers between all distinct security zones.

• Network filters and detectors should be installed to detect attacks originating in the
cluster and targeting the cluster. Segregating trusted and untrusted hosts by network can
help with these filters.

• Clearly, any detected security problems should immediately result in the disabling of the
associated user’s access to the cluster.

These solutions require networking gear that can operate at both layer 2 and layer 3, perform IP
filtering on the fly, and can be dynamically reconfigured in associate with node allocation on the
cluster.

5 Conclusion
In this paper, we have described the technical challenges that we have encountered in the first
phase of a project to build and operate a cluster in support of development and scalability
research. Facilities to support large-scale development and research are critical to the future rapid
growth of HPC systems and the HPC scientific community.
A number of the challenges in supporting this facility were solved with a robust node
management infrastructure and with flexible system policies, but the most difficult problems,
ranging from image description through data gathering remain. As we add more users to the
system and support increased functionality, it will become imperative that we solve these in a
general way.

6 References
[1] R. Evard, “Chiba City: A Case Study of a Large Linux Cluster”, in Beowulf Cluster
Computing with Linux, by Thomas Sterling. MIT Press, 2001.

[2] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and C. V. Packer.
“BEOWULF: a Parallel Workstation for Scientific Computation”, in Proceedings of the 24th
International Conference on Parallel Processing, 1995.
[3] M. Burgess, “Cfengine, a Site Configuration Engine”, in USENIX Computing Systems
Volume 8, 1995.
[4] Putchong Uthayopas, Sugree Phatanapherom, Thara Angskun, Somsak Sriprayoonsakul,
"SCE: A Fully Integrated Software Tool for Beowulf Cluster System", in Proceedings of Linux
Clusters: the HPC Revolution, National Center for Supercomputing Applications(NCSA),
University of Illinois, Urbana, IL, June 25-27, 2001.
[5] Philip M. Papadopoulos, Mason J. Katz, and Greg Bruno, “NPACI Rocks: Tools and
Techniques for Easily Deploying Manageable Linux Clusters”, in Proceedings of Cluster 2001,
October 2001.
[6] Kickstart: http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/custom-guide/
[7] DHCP: ftp://ftp.isi.edu/in-notes/rfc2131.txt
[8] PXE: ftp://download.intel.com//labs/manage/wfm/download/pxespec.pdf
[9] R. Minnich, J. Hendricks, and D. Webster, “The Linux BIOS”, in The Fourth Annual Linux
Showcase and Conference, October 2000.

License Statement (not meant to be published)
The submitted manuscript has been created by the University of Chicago as Operator of Argonne
National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Dept. of
Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly, by or on behalf
of the Government.

	Background
	A Development and Testbed Facility
	System Components
	The Management System
	System Usage
	Initial Capabilities
	Relation to Computational Clusters

	Testbed Usage Characterization
	Computational Usage
	Basic Development
	System Development
	Extreme Development
	Hardware Development
	Hybrid Models

	Technical Issues
	Support for Arbitrary OS Images
	Image Description Mechanism
	OS Installation Mechanism
	Node Recovery System

	Complex Infrastructure Requirements
	Entire Cluster Simulation
	External Infrastructure
	Production Integration

	Supporting Data Gathering in Jobs
	Persistent Node Identification
	Node-Proof System Software
	Smarter Node BIOS
	Security

	Conclusion
	References
	License Statement (not meant to be published)

